81 research outputs found

    Confinement, Vacuum Structure: from QCD to Quantum Gravity

    Full text link
    A minimal Lorentz gauge gravity model with R^2-type Lagrangian is proposed. In the absence of torsion the model admits a topological phase with unfixed metric. The model possesses a minimal set of dynamical degrees of freedom for the torsion. Remarkably, the torsion has the same number of dynamical of-shell degrees of freedom as the metric tensor. We trace an analogy between the structure of the quantum chromodynamics and the structure of possible theory of quantum gravity.Comment: 7 pages; reduced version of talk given at IV International Symposium on Symmetries in Subatomic Physics (SSP 2009), plenary session in Honor of Yongmin Cho's 65th Birthday, Taipei, Taiwan, 2-5 June 2009; to appear in "Symmetries in Subatomic Physics", ed. P. Hwang

    Current and future treatments of pulmonary arterial hypertension

    Get PDF
    Therapeutic options for pulmonary arterial hypertension (PAH) have increased over the last decades. The advent of pharmacological therapies targeting the prostacyclin, endothelin, and NO pathways has significantly improved outcomes. However, for the vast majority of patients, PAH remains a life‐limiting illness with no prospect of cure. PAH is characterised by pulmonary vascular remodelling. Current research focusses on targeting the underlying pathways of aberrant proliferation, migration, and apoptosis. Despite success in preclinical models, using a plethora of novel approaches targeting cellular GPCRs, ion channels, metabolism, epigenetics, growth factor receptors, transcription factors, and inflammation, successful transfer to human disease with positive outcomes in clinical trials is limited. This review provides an overview of novel targets addressed by clinical trials and gives an outlook on novel preclinical perspectives in PAH

    Stable Monopole-Antimonopole String Background in SU(2) QCD

    Get PDF
    Motivated by the instability of the Savvidy-Nielsen-Olesen vacuum we make a systematic search for a stable magnetic background in pure SU(2) QCD. It is shown that a pair of axially symmetric monopole and antimonopole strings is stable, provided that the distance between the two strings is less than a critical value. The existence of a stable monopole-antimonopole string background strongly supports that a magnetic condensation of monopole-antimonopole pairs can generate a dynamical symmetry breaking, and thus the magnetic confinement of color in QCD.Comment: 7 page

    Knot soliton in Weinberg-Salam model

    Full text link
    We study numerically the topological knot solution suggested recently in the Weinberg-Salam model. Applying the SU(2) gauge invariant Abelian projection we demonstrate that the restricted part of the Weinberg-Salam Lagrangian containing the interaction of the neutral boson with the Higgs scalar can be reduced to the Ginzburg-Landau model with the hidden SU(2) symmetry. The energy of the knot composed from the neutral boson and Higgs field has been evaluated by using the variational method with a modified Ward ansatz. The obtained numerical value is 39 Tev which provides the upper bound on the electroweak knot energy.Comment: 6 pages, 3 figures, analysis of stability adde

    Faddeev-Niemi Conjecture and Effective Action of QCD

    Get PDF
    We calculate a one loop effective action of SU(2) QCD in the presence of the monopole background, and find a possible connection between the resulting QCD effective action and a generalized Skyrme-Faddeev action of the non-linear sigma model. The result is obtained using the gauge-independent decomposotion of the gauge potential into the topological degrees which describes the non-Abelian monopoles and the local dynamical degrees of the potential, and integrating out all the dynamical degrees of QCD.Comment: 6 page

    Search for the Chiral Magnetic Effect in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV with the STAR forward Event Plane Detectors

    Full text link
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity ∣η∣<1.0|\eta|<1.0 and at forward rapidity 2.1<∣η∣<5.12.1 < |\eta|<5.1. We compare the results based on the directed flow plane (Ψ1\Psi_1) at forward rapidity and the elliptic flow plane (Ψ2\Psi_2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1\Psi_1 than to Ψ2\Psi_2, while a flow driven background scenario would lead to a consistent result for both event planes[1,2]. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur

    ΠžΠ΄Π½ΠΎΠΌΠΎΠΌΠ΅Π½Ρ‚Π½ΠΎΠ΅ эндоваскулярноС ΠΊΠ»ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ створок ΠΌΠΈΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° Β«ΠΊΡ€Π°ΠΉ-Π²-ΠΊΡ€Π°ΠΉΒ» ΠΈ Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ ΡƒΡˆΠΊΠ° Π»Π΅Π²ΠΎΠ³ΠΎ прСдсСрдия Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° высокого хирургичСского риска

    No full text
    Mitral regurgitation is one of the most common valvular heart diseases, with the gold standard of its treatment being an open surgical intervention. However, it is not always performed in patients with a high surgical risk. Atrial fibrillation is a frequent companion of mitral valve regurgitation. It significantly increases the risk of ischemic strokes and systemic thromboembolism and required the administration of anticoagulants. Long-term use of anticoagulants entails an increased risk of hemorrhagic complications. Surgical endovascular closure of the left atrial appendage allows for reduction of the risks both of embolic and hemorrhagic complications. This paper presents a clinical case of the first in Russia successful simultaneous endovascular remodeling of the mitral valve by edge-to-edge leaflet clipping and closure of the left atrial appendage with an Amplatzer Amulet occluder. This was an 85-year old patient with advanced mitral regurgitation, who was not considered a candidate for an open surgery due to his high surgical risk. The severity of the patients condition was related to atrial fibrillation, rectal cancer and severe anemia. The patient underwent simultaneous sequential clipping of the mitral valve leaflets and closure of the left atrial appendage. Control trans-esophageal echocardiography showed a significant decrease in the mitral regurgitation grade. There were no complications during the hospital stay and in the early postoperative period. The lack of convincing data and research makes it impossible to delineate clear indications and contraindications for the combination of two procedures within one surgical session. However, simultaneous endovascular clipping of the mitral valve leaflets and an occluder implantation into the left atrial appendage may become the method of choice in the treatment of patients with severe mitral valve regurgitation, prevention of embolic and hemorrhagic complications in high risk comorbid patients.ΠœΠΈΡ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространСнных ΠΊΠ»Π°ΠΏΠ°Π½Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠΊΠΎΠ² сСрдца, Π·ΠΎΠ»ΠΎΡ‚Ρ‹ΠΌ стандартом Π΅Π΅ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈΠ·Π½Π°Π½ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ΅ хирургичСскоС Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. Однако ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌ высокого хирургичСского риска Π΅Π³ΠΎ Π½Π΅ всСгда Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚. Ѐибрилляция прСдсСрдий частый спутник нСдостаточности ΠΌΠΈΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π°. Она Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ риск развития ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΈΡ… ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚ΠΎΠ² ΠΈ систСмных тромбоэмболий, Ρ‡Ρ‚ΠΎ опрСдСляСт Π½Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ антикоагулянтной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π”Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€ΠΈΠ΅ΠΌ антикоагулянтов Π²Π»Π΅Ρ‡Π΅Ρ‚ Π·Π° собой ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ риска гСморрагичСских ослоТнСний. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ эндоваскулярного закрытия ΡƒΡˆΠΊΠ° Π»Π΅Π²ΠΎΠ³ΠΎ прСдсСрдия позволяСт ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ риски ΠΊΠ°ΠΊ эмболичСских, Ρ‚Π°ΠΊ ΠΈ гСморрагичСских ослоТнСний. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ описано клиничСскоС наблюдСниС, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅Π΅ собой ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Π² Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠΏΡ‹Ρ‚ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΠΌΠΎΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ выполнСния Π΄Π²ΡƒΡ… ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ эндоваскулярного рСмодСлирования ΠΌΠΈΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ клипирования створок ΠΊΡ€Π°ΠΉ-Π²-ΠΊΡ€Π°ΠΉ ΠΈ закрытия ΡƒΡˆΠΊΠ° Π»Π΅Π²ΠΎΠ³ΠΎ прСдсСрдия c ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠΊΠΊΠ»ΡŽΠ΄Π΅Ρ€Π° Amplatzer Amulet. ΠŸΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρƒ 85 Π»Π΅Ρ‚ с Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠΈΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π±Ρ‹Π»ΠΎ ΠΎΡ‚ΠΊΠ°Π·Π°Π½ΠΎ Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ хирургичСском Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ Π²Π²ΠΈΠ΄Ρƒ высокого хирургичСского риска. ВяТСлоС состояниС ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π±Ρ‹Π»ΠΎ обусловлСно фибрилляциСй прСдсСрдий, Ρ€Π°ΠΊΠΎΠΌ прямой кишки ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ Π°Π½Π΅ΠΌΠΈΠ΅ΠΉ. ΠŸΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρƒ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΠΎΠ΄Π½ΠΎΠΌΠΎΠΌΠ΅Π½Ρ‚Π½ΠΎΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΊΠ»ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ створок ΠΌΠΈΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° ΠΈ Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ ΡƒΡˆΠΊΠ° Π»Π΅Π²ΠΎΠ³ΠΎ прСдсСрдия. ΠŸΡ€ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ чрСспищСводной эхокардиографии ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ сниТСниС стСпСни ΠΌΠΈΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π³ΡƒΡ€Π³ΠΈΡ‚Π°Ρ†ΠΈΠΈ. ОслоТнСний Π½Π° Π³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ этапС ΠΈ Π² Ρ€Π°Π½Π½Π΅ΠΌ послСопСрационном ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ Π½Π΅ зарСгистрировано. ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ ΡƒΠ±Π΅Π΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² исслСдований Π½Π΅ позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ‚ΠΊΠΈΠ΅ показания ΠΈ противопоказания для объСдинСния Π΄Π²ΡƒΡ… ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ Π² ΠΎΠ΄Π½Ρƒ Ρ…ΠΈΡ€ΡƒΡ€Π³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ сСссию. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΎΠ΄Π½ΠΎΠΌΠΎΠΌΠ΅Π½Ρ‚Π½ΠΎΠ΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ эндоваскулярного клипирования створок ΠΌΠΈΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° ΠΈ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΎΠΊΠΊΠ»ΡŽΠ΄Π΅Ρ€Π° Π² ΡƒΡˆΠΊΠΎ Π»Π΅Π²ΠΎΠ³ΠΎ прСдсСрдия ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Ρ‹Π±ΠΎΡ€Π° для лСчСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с тяТСлой Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΌΠΈΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π°, ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ эмболичСских ΠΈ гСморрагичСских ослоТнСний Ρƒ ΠΊΠΎΠΌΠΎΡ€Π±ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² высокого хирургичСского риска
    • …
    corecore